
Problem reduction, memory and
renormalization

Panos Stinis

Northwest Institute for Advanced Computing
Pacific Northwest National Laboratory

Stanford, June 2016

A simple example

The linear differential system for x(t) and y(t) given by

dx
dt

= x + y , x(0) = x0

dy
dt

= −y + x , y(0) = y0

can be reduced into an equation for x(t) alone.

dx
dt

= x +

∫ t

0
e−(t−s)x(s)ds + y0e−t

Reduction leads to memory effects

We want a formalism which allows us to generalize this
observation to nonlinear systems of arbitrary (but finite)
dimension.

Stanford, June 2016

A simple example

The linear differential system for x(t) and y(t) given by

dx
dt

= x + y , x(0) = x0

dy
dt

= −y + x , y(0) = y0

can be reduced into an equation for x(t) alone.

dx
dt

= x +

∫ t

0
e−(t−s)x(s)ds + y0e−t

Reduction leads to memory effects

We want a formalism which allows us to generalize this
observation to nonlinear systems of arbitrary (but finite)
dimension.

Stanford, June 2016

The Mori-Zwanzig formalism

Zwanzig(1961), Mori(1965), Chorin, Hald, Kupferman (2000)

Suppose we are given an M-dimensional system of ordinary
differential equations

dφ(u0, t)
dt

= R(φ(u0, t)) (1)

with initial condition φ(u0,0) = u0.

Transform into a system of linear partial differential equations

∂

∂t
etLu0k = LetLu0k , k = 1, . . . ,M

where the Liouvillian operator L =
∑M

i=1 Ri(u0) ∂
∂u0i

. Note that
Lu0j = Rj(u0).

Stanford, June 2016

Derivation of the Liouville equation

Let g(u0) be any (smooth) function of u0 and define
u(u0, t) = g(φ(u0, t)).

We now proceed to derive a PDE satisfied by u(u0, t).

∂

∂t
(u(u0, t)) =

∑
i

(
∂g
∂u0i

)(φ(u0, t))
∂

∂t
(φi(u0, t))

=
∑

i

Ri(φ(u0, t))(
∂g
∂u0i

)(φ(u0, t)). (2)

We now want to prove that∑
i

Ri(φ(u0, t))(
∂g
∂u0i

)(φ(u0, t)) =
∑

i

Ri(u0)
∂

∂u0i
(g(φ(u0, t))).

(3)

Stanford, June 2016

First we prove the following useful identity

R(φ(u0, t)) = Du0φ(u0, t)R(u0). (4)

In this formula Du0φ(u0, t) is the Jacobian of φ(u0, t) and
multiplication on the right hand side is a matrix vector
multiplication.

Define F (u0, t) to be the difference of the left hand side and the
right hand side of (4)

F (u0, t) = R(φ(u0, t))− Du0φ(u0, t)R(u0). (5)

Then at t = 0 we have

F (u0,0) = R(φ(u0,0))− Du0φ(u0,0)R(u0) (6)
= R(u0)− Du0(u0) · R(u0)

= R(u0)− I · R(u0) ≡ 0. (7)

Stanford, June 2016

Differentiating F with respect to t we get

∂

∂t
F (u0, t) =

∂

∂t
R(φ(u0, t))− ∂

∂t
(Du0φ(u0, t)R(u0)) =

=
∂

∂t
R(φ(u0, t))− (

∂

∂t
(Du0φ(u0, t)))R(u0)

= (Du0R)(φ(u0, t)) · ∂
∂t
φ(u0, t)− (Du0(

∂

∂t
φ(u0, t)))R(u0)

= (Du0R)(φ(u0, t)) · ∂
∂t
φ(u0, t)− (Du0(R(φ(u0, t)))) · R(u0)

= (Du0R)(φ(u0, t)) · R(φ(u0, t))

−(Du0R)(φ(u0, t)) · Du0φ(u0, t) · R(u0)

= (Du0R)(φ(u0, t)) · [R(φ(u0, t))− Du0φ(u0, t) · R(u0)]

= (Du0R)(φ(u0, t)) · F (u0, t). (8)

From (7) and (8) above we conclude that F (u0, t) ≡ 0. But
F (u0, t) ≡ 0 implies (4).

Stanford, June 2016

We now use (4) to establish (3). Indeed∑
i

Ri(φ(u0, t))(
∂g
∂u0i

)(φ(u0, t)) =

=
∑

i

(
∑

j

∂φi

∂u0j
(u0, t)Rj(u0))(

∂g
∂u0i

)(φ(u0, t)) =

=
∑

j

Rj(u0)(
∑

i

(
∂g
∂u0i

)(φ(u0, t))
∂φi

∂u0j
(u0, t)) =

=
∑

j

Rj(u0)
∂

∂u0j
(g(φ(u0, t))) (9)

The first equality above follows from (4).

Stanford, June 2016

From (2) and (3) we conclude that u(u0, t) solves{
∂
∂t u(u0, t) =

∑
j Rj(u0) ∂

∂u0j
u(u0, t) = Lu(u0, t)

u(u0,0) = g(u0)
(10)

where L is the linear differential operator L =
∑

i Ri(u0) ∂
∂u0i

.

Define the evolution operator etL as follows:(
etLg

)
(u0) = g (u(u0, t))

For g(u0) = u0 we have that (10) becomes

∂

∂t
etLu0 = LetLu0.

Remark: For stochastic systems this is called the backward
Kolmogorov equation. The equation for the density is the
Liouville equation (forward Kolmogorov equation).

Stanford, June 2016

Let u0 = (û0, ũ0) where û0 is N-dimensional and ũ0 is M − N
-dimensional. Define a projection operator P : F(u0)→ F̂(û0).
Also, define the operator Q = I − P.

∂

∂t
etLu0k = etLPLu0k + etLQLu0k

= etLPLu0k + etQLQLu0k +

∫ t

0
e(t−s)LPLesQLQLu0kds (11)

for k = 1, . . . ,N.

We have used Dyson’s formula (Duhamel’s principle)

etL = etQL +

∫ t

0
e(t−s)LPLesQLds. (12)

Stanford, June 2016

If we write
etQLQLu0k = wk ,

wk (u0, t) satisfies the equation{
∂
∂t wk (u0, t) = QLwk (u0, t)
wk (u0,0) = QLu0k = Rk (u0)− (PRk)(û0).

(13)

The solution of (13) is at all times orthogonal to the range of P.
We call it the orthogonal dynamics equation.

Remark: The difficulty with the orthogonal dynamics equation
is that, in general, it cannot be written as a closed equation for
wk (u0, t). This means that its numerical solution is usually
prohibitively expensive (“law of conservation of trouble").

Stanford, June 2016

Since the solutions of the orthogonal dynamics equation
remain orthogonal to the range of P, we can project the
Mori-Zwanzig equation (11) and find

∂

∂t
PetLu0k = PetLPLu0k + P

∫ t

0
e(t−s)LPLesQLQLu0kds. (14)

Use (14) as the starting point of approximations for the
evolution of the quantity PetLu0k for k = 1, . . . ,N (note that
equation (14) involves the orthogonal dynamics operator etQL).

Construct reduced models based on mathematical, physical
and numerical observations.

These models come directly from the original equations and the
terms appearing in them are not introduced by hand.

Stanford, June 2016

Since the solutions of the orthogonal dynamics equation
remain orthogonal to the range of P, we can project the
Mori-Zwanzig equation (11) and find

∂

∂t
PetLu0k = PetLPLu0k + P

∫ t

0
e(t−s)LPLesQLQLu0kds. (14)

Use (14) as the starting point of approximations for the
evolution of the quantity PetLu0k for k = 1, . . . ,N (note that
equation (14) involves the orthogonal dynamics operator etQL).

Construct reduced models based on mathematical, physical
and numerical observations.

These models come directly from the original equations and the
terms appearing in them are not introduced by hand.

Stanford, June 2016

Fluctuation-dissipation theorems

Assume that one has access to the p.d.f. of the initial
conditions, say ρ(u0).

1) Conditional expectation: For a function f (u0) we have

E [f (u0)|û0] =

∫
f (u0)ρ(u0)dũ0∫
ρ(u0)dũ0

.

The conditional expectation is the best in an L2 sense, meaning
E [|f − E [f |û0]|2] ≤ E [|f − h(û0)|2] for all functions h.

2) Finite-rank projection: Denote the space of
square-integrable functions of û0 as L̂2. Let h1(û0),h2(û0), . . .
be an orthonormal set of basis functions of L̂2, i.e. E [hihj] = δij
(w.r.t. the p.d.f. ρ(u0)). Then,

(Pf)(û0) =
l∑

j=1

ajhj(û0),

where aj = E [fhj], for j = 1, . . . , l .
Stanford, June 2016

Remark: If we keep only the linear terms in the expansion, we
get the so called “linear" projection, which is the most popular
(implicit assumption of being near equilibrium).

Fluctuation-dissipation theorem of the first kind: Consider
the case of only one resolved variable, say u01 and keep only
the linear term in the projection, Pf (u0) = (f ,u01)u01 where we
assume (u01,u01) = 1. The MZ equation becomes

∂

∂t
etLu01 = etLPLu01 + etQLQLu01 +

∫ t

0
e(t−s)LPLesQLQLu01ds,

or

∂

∂t
etLu01 = (Lu01,u01)etLu01 + etQLQLu01

+

∫ t

0
(LesQLQLu01,u01)e(t−s)Lu01ds. (15)

Stanford, June 2016

We take the inner product of (15) with u01 and find

∂

∂t
(etLu01,u01) = (Lu01,u01)(etLu01,u01)

+ (etQLQLu01,u01) +

∫ t

0
(LesQLQLu01,u01)e(t−s)Lu01ds

= (Lu01,u01)(etLu01,u01)

+

∫ t

0
(LesQLQLu01,u01)(e(t−s)Lu01,u01)ds, (16)

because PetQLQLu01 = (etQLQLu01,u01)u01 = 0 and hence
(etQLQLu01,u01) = 0.

Remark: Equation (16) describes the evolution of the
autocorrelation (etLu01,u01).

Multiply equation (16) with u01 and recall that
PetLu01 = (etLu01,u01)u01.

Stanford, June 2016

We find

∂

∂t
PetLu01 = (Lu01,u01)PetLu01+

∫ t

0
(LesQLQLu01,u01)Pe(t−s)Lu01.

(17)

∂

∂t
(etLu01,u01) = (Lu01,u01)(etLu01,u01)

+

∫ t

0
(LesQLQLu01,u01)(e(t−s)Lu01,u01)ds. (18)

Remark: Equation (17) describes the evolution of PetLu01
which is a non-equilibrium quantity. Equation (18) describes the
evolution of (etLu01,u01) which is an equilibrium quantity (in fact
an autocorrelation). But these are the same equations!!

This is the fluctuation-dissipation theorem of the first kind also
known as Onsager’s principle.

Stanford, June 2016

Fluctuation-dissipation theorem of the second kind:
Assume that P is the finite-rank projection. Since the quantity
etQLQLu01 starts and stays in the space orthogonal to the range
of P, we have etQLQLu01 = QetQLQLu01. For the memory term
kernel we find

PLesQLQLu0k = PLQesQLQLu0k

=
l∑

j=1

(LQesQLQLu0k ,hj(û0))hj(û0)

For Hamiltonian systems, if one uses the Boltzmann distribution
to define the inner product then the operator L is
skew-symmetric. This holds more generally.

Proposition:If the density used to define the inner product is
invariant and the projection used is the finite-rank one, then the
operator L is skew-symmetric.

Stanford, June 2016

If the assumptions of the theorem hold then

PLesQLQLu01 = −
l∑

j=1

(esQLQLu0k ,QLhj(û0))hj(û0)

Remark: All the memory kernels become correlations of
different orders. In particular, for the linear function h(û0) = u0k
we have the noise autocorrelation (esQLQLu0k ,QLu0k).

The minus sign means that in this case, the memory term is
dissipative in nature. Thus, the noise term i.e., the fluctuations
are related to the memory term i.e., the dissipation. This is the
fluctuation-dissipation theorem of the second kind.

It is very popular in statistical physics and molecular dynamics.

Stanford, June 2016

Time-scale classification

Short Memory Long MemoryNo Time−scale Separation

 Resolved Variables

 Unresolved Variables

 Resolved Variables

 Unresolved Variables

 Resolved Variables

 Unresolved Variables

Stanford, June 2016

The short-time and short-memory approximations

We rewrite Dyson’s formula as

etQL = etL −
∫ t

0
e(t−s)LPLesQLds

Make the following approximation

etQL ∼= etL

In other words, we replace the flow in the orthogonal
complement of F with the flow induced by the full system
operator L.

Remark: We expect such an approximation to be valid only for
short times, unless there is a special structure of the full
system.

Stanford, June 2016

∫ t

0
e(t−s)LPLesQLQLu0kds =

∫ t

0
e(t−s)LPL(P + Q)esQLQLu0kds

=

∫ t

0
e(t−s)LPLQesQLQLu0kds, (19)

since PesQLQLu0k = 0. Adding and subtracting equal
quantities, we find

PLQesQLQLu0k = PLQesLQLu0k +PLQ(esQL−esL)QLu0k (20)

Expanding in Taylor series the difference we have

esQL− esL = I + sQL + · · · − I − sL− · · · = −sPL + O(s2), (21)

and thus
Q(esQL − esL) = O(s2), (22)

using QP = 0. Substituting (22) in (20) we find

∫ t

0
e(t−s)LPLesQLQLu0kds =

∫ t

0
e(t−s)LPLQesLQLu0kds+O(t3).

(23)
As expected dropping the integral term in Dyson’s formula
yields an approximation that is good only for short times.
However, under certain conditions this approximation can
become valid for longer times.

Stanford, June 2016

Consider the case where P is the finite-rank projection so

PLQesQLQLu0k =
l∑

j=1

(LQesQLQLu0k ,hj(û0))hj(û0), (24)

and for the approximation

PLQesLQLu0k =
l∑

j=1

(LQesLQLu0k ,hj(û0))hj(û0). (25)

If we truncate the memory after t0 units of time then∫ t

0
e(t−s)LPLesQLQLu0kds ≈

∫ t0

0
e(t−s)LPLQesQLQLu0kds

=

∫ t0

0
e(t−s)LPLQesLQLu0kds +

∫ t0

0
O(s2)ds

=

∫ t0

0
e(t−s)LPLQesLQLu0kds + O(t3

0).

Stanford, June 2016

Remark: The short-time approximation is valid for large times if
t0 is small. On the other hand, if t0 is large, then the error is
O(t3) and the approximation is only valid for short times.

Remark: The short-memory approximation contains the
delta-function approximation used in statistical physics as a
special case.

The short-memory approximation equations are

∂

∂t
etLu0k = etLPLu0k + etLQLu0k +

∫ t0

0
e(t−s)LPLesLQLu0kds

for k = 1, . . . ,N.

Stanford, June 2016

Simplest possible approximations

Exact memory∫ t
0 e(t−s)LPLesQLQLu0kds

�
�

�
�
�	 ?

@
@
@
@
@R

Delta memory

etL(
∫∞

0 PLesLQLu0kds)

t-model

t × etLPLQLu0k

Infinite memory∫ t
0 e(t−s)LPLQLu0kds

Stanford, June 2016

Absence of time-scale separation

The short-memory case while easier to deal with is not the
prevalent one in real-world applications. Of course, one can
think of developing methods which identify “slow" resolved and
“’fast" unresolved variables and construct a reduced model for
the slow ones.

This is easier said than done because the “slow" variables
should also have some physical significance. This is not
obvious if the “slow" variables turn out to be highly nonlinear
combinations of the underlying variables.

For intermediate memory length, the necessary memory
kernels can be found through a Volterra integral equation
formulation starting from Dyson’s formula. One computes only
certain correlations of the orthogonal dynamics (see the work
of Chorin, Hald, Kupferman, Darve and Karniadakis).

Stanford, June 2016

However, this may not be enough either. In particular, the
resolved variables may not only evolve on timescales which are
comparable with those of the unresolved variables but the
unresolved variables could be too many to even run the full
system once.

One way of addressing this situation is to accept the absence
of time-scale separation between the original variables and
develop reduced models based on a different classification.

To proceed in this direction we need to look at the classification
of systems according to size (cardinality, number of active
length and/or timescales).

This classification can help us to identify new “small" quantities
for which one can formulate (singular) perturbation expansions.

Stanford, June 2016

System size classification

|S1| : Size of original system
|S2| : Size of full system (available computational power)
|S3| : Size of reduced system

1 |S2| >> |S1|: Possible to run multiple simulations of the
original system. E.g. Linearized flows, certain chemical
kinetics systems.

2 |S2| ≈ |S1|: Possible to run a single simulation of the
original system. E.g. Molecular dynamics.

3 |S2| << |S1|: Not possible to run even a single simulation
of the original system. E.g. Atmosphere/ocean dynamics,
fluid/structure interaction, singular PDEs.

Stanford, June 2016

System size classification

|S1| : Size of original system
|S2| : Size of full system (available computational power)
|S3| : Size of reduced system

1 |S2| >> |S1|: Possible to run multiple simulations of the
original system. E.g. Linearized flows, certain chemical
kinetics systems.

2 |S2| ≈ |S1|: Possible to run a single simulation of the
original system. E.g. Molecular dynamics.

3 |S2| << |S1|: Not possible to run even a single simulation
of the original system. E.g. Atmosphere/ocean dynamics,
fluid/structure interaction, singular PDEs.

Stanford, June 2016

System size classification

|S1| : Size of original system
|S2| : Size of full system (available computational power)
|S3| : Size of reduced system

1 |S2| >> |S1|: Possible to run multiple simulations of the
original system. E.g. Linearized flows, certain chemical
kinetics systems.

2 |S2| ≈ |S1|: Possible to run a single simulation of the
original system. E.g. Molecular dynamics.

3 |S2| << |S1|: Not possible to run even a single simulation
of the original system. E.g. Atmosphere/ocean dynamics,
fluid/structure interaction, singular PDEs.

Stanford, June 2016

Simplest model with absence of time-scale separation

The memory term
∫ t

0 e(t−s)LPLesQLQLu0kds involves two
evolution operators, the full dynamics operator etL and the
orthogonal dynamics operator etQL.

The full dynamics operator evolves on a time scale τf and the
orthogonal dynamics operator evolves on the time-scale τo.
There are three major cases: i) τf � τo, ii) τf ∼ τo, and iii)
τf � τo.

If we assume that both e(t−s)L and esQL are analytic, we can
expand the expression e(t−s)LPLesQL in Taylor series around
s = 0.

If we keep only the zero order term in both expansions we get∫ t
0 e(t−s)LPLesQLQLu0kds = tetLPLQLu0k + O(t2) which is

called the t-model.

Stanford, June 2016

Remark: The t-model contains no adjustable parameters (good
and bad).

1) Is the t-model stable, convergent?

2) Can it be used to track singularities?

3) What about the higher order terms? —-> A sea of
instabilities

4) What can be done?

Stanford, June 2016

1D Burgers equation

vt + PB(v , v) = −tP[B(v , Γ) + B(Γ, v)]

where B(g,h) = 1
2(gh)x and Γ = −(I − P)B(v , v).

1D focusing nonlinear Schrödinger equation

vt−i∆v+iPB[v , v , v , v , v] = i3tPB[Γ, v , v , v , v]+i2tPB[v , Γ, v , v , v].

where B[z1, z2, z3, z4, z5] = z1z∗2z3z∗4z5 and
Γ(x , t) = i(I − P)B[v , v , v , v , v].

Similarly, construct t-model for Euler and Navier-Stokes
equations.

Stanford, June 2016

-6 -4 -2 0 2 4

Log(Time)

-10

-8

-6

-4

-2

0

L
o
g
(E

n
er

g
y
)

N=32
Slope = -1.9781 +- 0.0001

Energy evolution of the t-model with N = 32 modes for the
inviscid Burgers equation with u0(x) = sin x .

Stanford, June 2016

0 0.2 0.4 0.6
Time

2.5

3

3.5

4

M
as

s

N=16
N=32
N=64
N=128
N=192
N=256
N=512
Estimated blow-up time

Mass evolution of the t-model for the 1D critical Schrödinger
equation. The vertical line denotes the numerically estimated
blow-up instant calculated with a mesh refinement algorithm.

Stanford, June 2016

Higher order models

Through Dyson’s formula and the linearity of etL the memory
term can be written as∫ t

0
e(t−s)LPLesQLQLu0kds = etL(QLu0k − e−tLetQLQLu0k

)
Now we will employ the identity I = P + Q and the
Baker-Campbell-Hausdorff (BCH) series for e−tLetQL. The BCH
formula reads e−tLetQL = eC(t ,u0) where

C(t ,u0) = −tL + tQL +
1
2

[−tL, tQL]

+
1

12

(
[−tL, [−tL, tQL]] + [tQL, [tQL,−tL]]

)
+ . . .

= −tPL− 1
2

[tPL, tQL]

+
1

12

(
[−tL,−[tPL, tQL]] + [tQL,−[tQL, tPL]]

)
+ . . .

Stanford, June 2016

Remark: All the higher terms involve the commutator
[−tL, tQL] = −tLtQL− tQL(−tL). Also, the last equality comes
from noting that
[−tL, tQL] = [tL, tPL] = [tQL, tPL] = −[tPL, tQL].

We find that∫ t

0
e(t−s)LPLesQLQLu0kds = etL(QLu0k − eC(t ,u0)QLu0k

)
(26)

Remark: Note that the first term in the BCH series is the
operator −tPL. It is very helpful computationally if we can keep
this term and discard the higher order ones because it involves
only the projected dynamics. We want to examine when is the
approximation C(t ,u0) ≈ −tPL acceptable.

From the BCH series we have

e−tLetQL − e−tPL = −1
2

[tPL, tQL] + O(t3). (27)

Depending on the initial conditions, [PL,QL] may be small and
thus allow the simplification of the memory term expression.

Stanford, June 2016

If we assume that [PL,QL] ≈ 0 and thus C(t ,u0) ≈ −tPL, then
from (26) we get∫ t

0
e(t−s)LPLesQLQLu0kds ≈ etL(QLu0k − e−tPLQLu0k

)
Expansion of the operator e−tPL in Taylor series around t = 0
gives

P
∫ t

0
e(t−s)LPLesQLQLu0kds ≈ (28)

∞∑
j=1

(−1)j+1 t j

j!
PetL(PL)jQLu0k .

Remark: This approximation turns out to be unstable but it also
suggests the next step.

Stanford, June 2016

2 4 6 8 10
Time

0

2

4

6

8

10

12

14

E
n
er

g
y
 i

n
 r

es
o
lv

ed
 m

o
d
es

rMZ 3rd order N=16
MZ 3rd order N=16
Exact solution

Figure : Evolution of energy content of resolved modes for inviscid 1D
Burgers equation

Stanford, June 2016

Scale dependence and renormalization

It may be possible to "renormalize" the expansion.

What does this mean?

1) Embed the MZ reduced models in a larger class of reduced
models which share the same functional form as the MZ
reduced models but have different coefficients in front of the
memory terms.

2) One can estimate these coefficients on the fly while the full
system is still well resolved.

Remark: Because we are interested in dynamic phenomena
this is time-dependent renormalization (extra complication).

Stanford, June 2016

The renormalized expansion

P
∫ t

0
e(t−s)LPLesQLQLu0kds ≈

∞∑
j=1

αj(−1)j+1 t j

j!
PetL(PL)jQLu0k .

The renormalized coefficients αj are dimensionless by
construction.

Estimate the coefficients by requiring that the reduced model
reproduces certain important features of the full system.

Remark: The reduced model should capture accurately the
rate of transfer of activity (e.g. mass, energy) from resolved to
unresolved scales.

Stanford, June 2016

Scaling laws and renormalization for singularities
(rMZ)

Main idea: The renormalized coefficients have a scaling law
dependence on the smoothness of the initial condition

Remark: By smoothness of initial condition we mean the ratio
of the largest Fourier mode present in the initial condition to the
largest Fourier mode that is resolved by the reduced model

Remark: 1) There are dependencies between the renormalized
coefficients of different order. 2) Order by order perturbative
renormalization is not enough

Remark: Example, for 1D Burgers, 3rd order rMZ with

a1 = α

(
1

N/2−β1

)
and a2 = a1

(
1

N/2−β2

)
and a3 = a2

(
1

N/2−β3

)
where α = 1.532, β1 = 0.452, β2 = −0.661 and β3 = 0.728 and
where N is the total number of Fourier modes.

Stanford, June 2016

“Proper” coarse-grained variables

For each problem it is important to concentrate on the relevant
degrees of freedom (Weinberg, 1983)

Remark: We would like to find variables that facilitate the
construction of a reduced model

Main idea: Choose variables for which the initial condition is
smooth. Then apply the previous renormalization arguments
(perturbative renormalization)

Remark: Such variables can be found by basis adaptation,
active subspaces, compressed sensing, empirical orthogonal
eigenfunction expansion, principal component analysis etc.

Remark: The renormalization of the coefficients has
connections with incomplete similarity.

Remark: Non-perturbative renormalization (resolved variable
function space expansion).

Stanford, June 2016

Some references

Chorin A.J., Hald O.H. and Kupferman R., Optimal
prediction with memory, Physica D 166 (2002) pp.
239-257.
Darve E., Solomon J. and Kia A., Computing generalized
Langevin equations and generalized Fokker-Planck
equations, PNAS 106 (27) (2009) pp. 10884-10889.
Li Z., Bian X., Caswell B. and Karniadakis G.E.,
Construction of dissipative particle dynamics models for
complex fluids via the Mori-Zwanzig formulation, Soft
Matter 10(43) (2014) pp. 8659-72.
P. S., Numerical computation of solutions of the critical
nonlinear Schrödinger equation after the singularity,
Multiscale Modeling and Simulation 10 (2012), pp. 48-60.
P.S., Renormalized Mori-Zwanzig reduced models for
systems without scale separation, Proceedings of the
Royal Society A Vol. 471 (2015) No. 2176.

Stanford, June 2016

